Purpose
To compute N Markov parameters M(1), M(2),..., M(N) from the parameters (A,B,C) of a linear time-invariant system, where each M(k) is an NC-by-NB matrix and k = 1,2,...,N. All matrices are treated as dense, and hence TF01RD is not intended for large sparse problems.Specification
SUBROUTINE TF01RD( NA, NB, NC, N, A, LDA, B, LDB, C, LDC, H, LDH,
$ DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDH, LDWORK, N, NA, NB, NC
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), H(LDH,*)
Arguments
Input/Output Parameters
NA (input) INTEGER
The order of the matrix A. NA >= 0.
NB (input) INTEGER
The number of system inputs. NB >= 0.
NC (input) INTEGER
The number of system outputs. NC >= 0.
N (input) INTEGER
The number of Markov parameters M(k) to be computed.
N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,NA)
The leading NA-by-NA part of this array must contain the
state matrix A of the system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,NA).
B (input) DOUBLE PRECISION array, dimension (LDB,NB)
The leading NA-by-NB part of this array must contain the
input matrix B of the system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,NA).
C (input) DOUBLE PRECISION array, dimension (LDC,NA)
The leading NC-by-NA part of this array must contain the
output matrix C of the system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,NC).
H (output) DOUBLE PRECISION array, dimension (LDH,N*NB)
The leading NC-by-N*NB part of this array contains the
multivariable parameters M(k), where each parameter M(k)
is an NC-by-NB matrix and k = 1,2,...,N. The Markov
parameters are stored such that H(i,(k-1)xNB+j) contains
the (i,j)-th element of M(k) for i = 1,2,...,NC and
j = 1,2,...,NB.
LDH INTEGER
The leading dimension of array H. LDH >= MAX(1,NC).
Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(1, 2*NA*NC).
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
Method
For the linear time-invariant discrete-time system
x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k),
the transfer function matrix G(z) is given by
-1
G(z) = C(zI-A) B + D
-1 -2 2 -3
= D + CB z + CAB z + CA B z + ... (1)
Using Markov parameters, G(z) can also be written as
-1 -2 -3
G(z) = M(0) + M(1)z + M(2)z + M(3)z + ... (2)
k-1
Equating (1) and (2), we find that M(0) = D and M(k) = C A B
for k > 0, from which the Markov parameters M(1),M(2)...,M(N) are
computed.
References
[1] Chen, C.T.
Introduction to Linear System Theory.
H.R.W. Series in Electrical Engineering, Electronics and
Systems, Holt, Rinehart and Winston Inc., London, 1970.
Numerical Aspects
The algorithm requires approximately (NA + NB) x NA x NC x N multiplications and additions.Further Comments
NoneExample
Program Text
* TF01RD EXAMPLE PROGRAM TEXT
* Copyright (c) 2002-2010 NICONET e.V.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, NAMAX, NBMAX, NCMAX
PARAMETER ( NMAX = 20, NAMAX = 20, NBMAX = 20, NCMAX = 20 )
INTEGER LDA, LDB, LDC, LDH
PARAMETER ( LDA = NAMAX, LDB = NAMAX, LDC = NCMAX,
$ LDH = NCMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = 2*NAMAX*NCMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, K, N, NA, NB, NC
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NAMAX), B(LDB,NBMAX), C(LDC,NAMAX),
$ H(LDH,NMAX*NBMAX), DWORK(LDWORK)
* .. External Subroutines ..
EXTERNAL TF01RD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, NA, NB, NC
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE IF ( NA.LE.0 .OR. NA.GT.NAMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) NA
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,NA ), J = 1,NA )
IF ( NB.LE.0 .OR. NB.GT.NBMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) NB
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,NA ), J = 1,NB )
IF ( NC.LE.0 .OR. NC.GT.NCMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) NC
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), I = 1,NC ), J = 1,NA )
* Compute M(1),...,M(N) from the system (A,B,C).
CALL TF01RD( NA, NB, NC, N, A, LDA, B, LDB, C, LDC, H,
$ LDH, DWORK, LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) N
DO 40 K = 1, N
WRITE ( NOUT, FMT = 99996 ) K,
$ ( H(1,(K-1)*NB+J), J = 1,NB )
DO 20 I = 2, NC
WRITE ( NOUT, FMT = 99995 )
$ ( H(I,(K-1)*NB+J), J = 1,NB )
20 CONTINUE
40 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TF01RD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TF01RD = ',I2)
99997 FORMAT (' The Markov Parameters M(1),...,M(',I1,') are ')
99996 FORMAT (/' M(',I1,') : ',20(1X,F8.4))
99995 FORMAT (8X,20(1X,F8.4))
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' NA is out of range.',/' NA = ',I5)
99992 FORMAT (/' NB is out of range.',/' NB = ',I5)
99991 FORMAT (/' NC is out of range.',/' NC = ',I5)
END
Program Data
TF01RD EXAMPLE PROGRAM DATA 5 3 2 2 0.000 -0.070 0.015 1.000 0.800 -0.150 0.000 0.000 0.500 0.000 2.000 1.000 -1.000 -0.100 1.000 0.000 1.000 0.000 0.000 1.000 0.000Program Results
TF01RD EXAMPLE PROGRAM RESULTS
The Markov Parameters M(1),...,M(5) are
M(1) : 1.0000 1.0000
0.0000 -1.0000
M(2) : 0.2000 0.5000
2.0000 -0.1000
M(3) : -0.1100 0.2500
1.6000 -0.0100
M(4) : -0.2020 0.1250
1.1400 -0.0010
M(5) : -0.2039 0.0625
0.8000 -0.0001
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index